F A C U L T Y   P R O F I L E 

photon image

Adjunct Associate Professor of Physiology & Cellular Biophysics and of Dermatology
Co-Director, Thompson Family Foundation Initiative in CIPN & Sensory Neuroscience

Sensory Transduction in Mammalian Touch and Pain Receptors.


Current Research

The somatosensory system continuously updates our brains about the forces, temperatures and chemicals that incessantly bombard our bodies. The goal of our research is to discover molecular mechanisms that encode these diverse environmental stimuli into neural signals. Our primary focus is to elucidate force transduction mechanisms that initiate the senses of touch and pain. Although Aristotle designated it as one of five basic senses, touch is a complex sense that encompasses numerous modalities (e.g., stretch, pressure, hair movements, vibration). Correspondingly, the touch-sensitive neurons that tile the body's surface display a remarkable array of force sensitivities, neural outputs and cellular morphologies. Although forward genetic screens have identified dozens of essential molecules in invertebrate mechanosensory neurons, we are only now beginning to uncover molecular players that govern the unique functions of touch receptors in mammals. We have developed in vitro and in vivo tools to discover the basis of sensory transduction in a light touch receptor, the Merkel cell-neurite complex. These touch receptors innervate highly sensitive areas such as fingertips, where they encode spatial features of objects. We use neurophysiological techniques to directly observe how individual, living touch receptors respond to force. We also use molecular approaches and mouse genetics to identify molecules that allow mechanoreceptor cells to sense force.

Depth coding of skin’s mechanosensory neurons. Merkel cell-neurite complexes (white) are found near the skin surface, whereas hair-follicle innervation (magenta) is buried deep within the tissue.

Image courtesy of Blair Jenkins.

Selected Publications

Marshall, K. L., M. Chadha, L. Desouza, S. J. Sterbing-D’Angelo, C. F. Moss and E. A. Lumpkin. Somatosensory substrates of flight control in bats. Cell Reports. (2015) 11:851–858.

Maksimovic, S. M., M. Nakatani, Y. Baba, A. M. Nelson, K. L. Marshall, S. A. Wellnitz, P. Firozi S.-H. Woo, S. Ranade, A. Patapoutian and E. A. Lumpkin. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature. (2014) 509:617-621. Equal contribution.

Woo, S.-H., S. Ranade, A. D. Weyer, A. E. Dubin, Y. Baba, Z. Qiu, M. Petrus, T. Miyamoto, K. Reddy, E. A. Lumpkin, C. L. Stucky and A. Patapoutian. Piezo2 is required for Merkel-cell mechanotransduction. Nature. (2014) 509:622-626.

Lesniak, D. R., K. L Marshall, S. A. Wellnitz, B. A. Jenkins, Y. Baba, M. N. Rasband, G. J. Gerling and E. A. Lumpkin. Computation identifies structural features that govern neuronal firing properties in slowly adapting touch receptors. eLife. (2014) 3(0):e04188. Equal contribution.

Hyperelastic Material Properties of Mouse Skin under Compression. Wang Y, Marshall KL, Baba Y, Gerling GJ, Lumpkin EA. PLoS One. 2013 Jun 18;8(6):e67439.

The ion channel TRPA1 is required for chronic itch. Wilson SR, Nelson AM, Batia L, Morita T, Estandian D, Owens DM, Lumpkin EA, Bautista DM. J Neurosci. 2013 May 29;33(22):9283-94. doi: 10.1523/JNEUROSCI.5318-12.2013.

Excitatory glutamate is essential for development and maintenance of the piloneural mechanoreceptor. Woo SH, Baba Y, Franco AM, Lumpkin EA, Owens DM. Development. 2012 Feb;139(4):740-8. doi: 10.1242/dev.070847. Epub 2012 Jan 12.

Identification of epidermal progenitors for the Merkel cell lineage. Woo SH, Stumpfova M, Jensen UB, Lumpkin EA, Owens DM. Development. 2010 Dec;137(23):3965-71. doi: 10.1242/dev.055970. Epub 2010 Nov 1. Erratum in: Development. 2012 Feb 1;139(3):622.

Wellnitz, S. A., D. R. Lesniak, G. J. Gerling and E. A. Lumpkin.  (2010) The regularity of sustained firing reveals two populations of slowly adapting touch receptors in mouse hairy skin.  J. Neurophysiol. 103:3378–3388.  PMID: 20393068.

Morrison, K. M., G. Miesegaes, E. A. Lumpkin and S. M. Maricich. (2009) Mammalian Merkel cells are descended from the epidermal lineage.  Devel. Biol. 336: 76-83.  PMID: 19782676.

Maricich, S. M., S. Wellnitz, A. M. Nelson, D. R. Lesniak, G. J. Gerling, E. A. Lumpkin* and H. Zoghbi* (2009) Merkel cells are essential for light touch responses in mice.  Science.  324:1580–1582.*Corresponding authors.

Bhattacharya, M. R. C., D. M. Bautista*, K. Wu, E. A. Lumpkin* and D. Julius* (2008)  Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. PNAS 105: 20015-20020. *Corresponding authors.

Haeberle H. and E. A. Lumpkin (2008)  Merkel cells in somatosensation. Chem. Percept.  1:110-118.

Haeberle H., L. A. Bryan, T. J. Vadakkan, M. E. Dickinson and E. A. Lumpkin (2008)  Swelling-activated calcium channels trigger calcium transients in Merkel cells. PLoS ONE 3(e1750): 1-10.

Piskorowski R. A., H. Haeberle, M. V. Panditrao and E. A. Lumpkin (2008)  Voltage-activated ion channels and Ca2+ -induced Ca2+ release shape Ca2+ signaling in Merkel cells.  Pflugers Archiv. Eur. J. Physiol. 457: 197-209.PMID: 18415122.

Lumpkin, E. A.* and M. J. Caterina (2007)  Mechanisms of sensory transduction in the skin.  Nature.  445: 858-865. PMID: 17314972. *Corresponding author.

Haeberle, H., M. Fujiwara, J. Chuang, M. M. Medina, M. V. Panditrao, S. Bechstedt, J. Howard and E. A. Lumpkin (2004)  Molecular profiling reveals synaptic release machinery in Merkel cells.  PNAS 101: 14503-14508.  PMID: 15448211.